

中华人民共和国国家标准

GB/T 12706.3—2020 代替 GB/T 12706.3—2008

额定电压 $1 \text{ kV}(U_m = 1.2 \text{ kV})$ 到 35 kV $(U_m = 40.5 \text{ kV})$ 挤包绝缘电力电缆及附件 第 3 部分:额定电压 $35 \text{ kV}(U_m = 40.5 \text{ kV})$ 电缆

Power cables with extruded insulation and their accessories for rated voltages from 1 kV ($U_m = 1.2 \text{ kV}$) up to 35 kV ($U_m = 40.5 \text{ kV}$)—

Part 3: Cables for rated voltages of 35 kV($U_m = 40.5 \text{ kV}$)

2020-03-31 发布 2020-10-01 实施

▲ 版权声明

中国标准在线服务网(www.spc.org.cn)是中国标准出版社委托北京标科网络技术有限公司负责运营销售正版标准资源的网络服务平台,本网站所有标准资源均已获得国内外相关版权方的合法授权。未经授权,严禁任何单位、组织及个人对标准文本进行复制、发行、销售、传播和翻译出版等违法行为。版权所有,违者必究!

中国标准在线服务网 http://www.spc.org.cn

标准号: GB/T 12706.3-2020

购买者: 北京中培质联

订单号: 0100200508060394

防伪号: 2020-0508-0256-0439-4600

时 间: 2020-05-08

定 价: 63元

中华人民共和国国家标准

额定电压 $1 \text{ kV}(U_m = 1.2 \text{ kV})$ 到 35 kV $(U_m = 40.5 \text{ kV})$ 挤包绝缘电力电缆及附件 第 3 部分:额定电压 $35 \text{ kV}(U_m = 40.5 \text{ kV})$ 电缆

GB/T 12706.3—2020

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029) 北京市西城区三里河北街16号(100045)

> 网址:www.spc.org.cn 服务热线:400-168-0010 2020 年 3 月第一版

书号: 155066 • 1-64510

版权专有 侵权必究

目 次

前言	i	\prod
1	范围	1
2	规范性引用文件	1
3	术语和定义	2
4	电压标示和材料	3
5	导体	5
	绝缘	
7	屏蔽	
8	三芯电缆的缆芯、内衬层和填充 ······	
9	单芯或三芯电缆的金属层	
10	金属屏蔽	
11	同心导体	8
12	金属套铅套	8
13	金属铠装	9
14	外护套	
15	试验条件	
16	例行试验	
17	抽样试验 电气型式试验	13
18		
19	非电气型式试验	
20	安装后电气试验	
21	电缆产品的补充条款 ************************************	31
附表	录 A (规范性附录) 确定护层尺寸的假设计算方法 ······	32
附表	录 B (规范性附录) 数值修约 ······	36
附表	录 C (规范性附录) HEPR 绝缘硬度测定 ······	38
附表	录 D (规范性附录) 半导电屏蔽电阻率的测量方法 ······	40
附表	录 E (规范性附录) 透水试验 ······	42
附表	录 F (规范性附录) 具有纵包金属箔复合护层电缆组件的试验 ······	44
附表	录 G (规范性附录) 电缆产品的补充条款 ·······	46
参考	考文献	50
图	C.1 大曲率面的测量 ······	38
图	C.2 小曲率面的测量 ······	39

GB/T 12706.3—2020

冬	D.1	导体屏蔽体积电阻率测量	41
冬	D.2		
图	E.1	纵向透水试验示意	
图	F.1	金属箔粘结强度试验	44
冬	F.2	金属箔搭接处示例	45
冬	F.3	金属箔搭接处的粘结强度试验	45
图	G.1	产品型号的组成和排列顺序	47
表		额定电压 $U_{\scriptscriptstyle 0}$ 推荐值 ···································	
表		绝缘混合料	
表		各种绝缘混合料电缆的导体最高温度 ······	
表		不同类型护套混合料电缆的导体最高温度	
表	5	无卤混合料的试验方法和要求 ······	5
表	6	绝缘标称厚度 ······	6
表	7	<u> </u>	7
表	8	铠装圆金属丝标称直径	10
表	9	铠装金属带标称直径	10
表	10	例行试验电压 · · · · · · · · · · · · · · · · · · ·	13
表	11	抽样试验样品数量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
表	12	抽样试验电压 ·····	16
表	13	各种热固性绝缘混合料特殊性能试验要求	16
表	14	弹性体护套特殊性能试验要求	17
表	15	电缆绝缘的电气型式试验要求	19
表	16	非电气型式试验	21
表	17	电缆绝缘机械性能试验要求(老化前后)	23
表	18	护套机械性能试验要求(老化前后)	24
表	19	PVC 护套特殊性能试验要求	25
表	20	PE(热塑性聚乙烯)护套特殊性能试验要求	25
表	21	无卤护套特殊性能试验要求 ······	26
表	A.1	导体的假设直径	32
表	A.2		
表	B.1	规定值、测定值或其计算值的修约数位	
表	G.1	电缆常用型号	47
丰	C^{2}	中 继	40

前 言

GB/T 12706《额定电压 1 kV(U_m =1.2 kV)到 35 kV(U_m =40.5 kV)挤包绝缘电力电缆及附件》分为 4 个部分:

- ——第1部分:额定电压 $1 \text{ kV}(U_m = 1.2 \text{ kV})$ 和 $3 \text{ kV}(U_m = 3.6 \text{ kV})$ 电缆;
- ——第 2 部分: 额定电压 6 kV(U_m=7.2 kV)到 30 kV(U_m=36 kV)电缆;
- ——第3部分:额定电压35 kV(U_m=40.5 kV)电缆;
- ——第 4 部分:额定电压 6 kV(U_m=7.2 kV)到 35 kV(U_m=40.5 kV)电缆附件试验要求。

本部分为 GB/T 12706 的第 3 部分。

本部分代替 GB/T 12706.3—2008《额定电压 1 kV(U_m =1.2 kV)到 35 kV(U_m =40.5 kV)挤包绝缘电力电缆及附件 第 3 部分:额定电压 35 kV(U_m =40.5 kV)电缆》。

本部分与 GB/T 12706.3-2008 相比,除编辑性修改外主要技术变化如下

- ——增加了 ST₈ 无卤混合护套料(见第 1 章和表 4);
- ——删除了 ST₁ 和 ST₃ 护套材料(见表 4、表 16、表 18、表 19 和表 20、2008 年版的表 4、表 13、表 15、表 16 和表 17);
- ——删除了第 1 种铜导体(见第 5 章,2008 年版的第 5 章);
- ——增加了对无卤低烟阻燃电缆绝缘、内衬层和填充、隔离套和外护套的要求(见 6.1、8.2.2、 13.3.3、14.2 和表 5);
- ——增加了可剥离型绝缘屏蔽(见 7.3);
- ——修改了内衬层和填充的技术要求(见 8.2,2008 年版的 8.1);
- ——修改了铅套的标称厚度计算公式(见第 12 章,2008 年版的 12.1);
- ——修改了铠装材料的规定(见 13.2,2008 年版的 13.2);
- ——增加了粗圆金属丝直径的规定以及铠装下隔离套或内衬层标称厚度规定(见 13.4 和表 8、13.6);
- ——修改了外护套厚度的规定(见 14.3,2008 年版的 14.3);
- ——增加了试验中电缆导体温度的确定方法(见 15.4);
- ——增加了有半导电层外护套的耐压试验(见 16.1 和 16.5);
- ——修改了对非金属护套厚度的要求(见 17.5.3 和 19.3,2008 年版的 17.5.3 和 19.2);
- ——增加了包带搭盖率和间隙率的测量要求(见 17.11);
- ——修改了弯曲试验圆柱体直径的规定(见 18.5,2008 年版的 18.1.3);
- ——增加了 ST₈ 无卤护套混合料的机械性能、高温压力、低温性能、燃烧性能和吸水性能试验(见 19.5、19.6、19.9、19.15 和 19.24);
- ——修改了电缆不延燃试验(见 19.15,2008 年版的 19.14);
- ——修改了黑色聚乙烯护套碳黑含量测试的适用对象(见 19.16,2008 年版的 19.15);
- ——增加了 ST₈ 无卤护套混合料的机械性能和特殊性能试验方法和要求(见表 18 和表 21);
- ——修改了同心导体和金属屏蔽使直径增加数值的规定(见表 A.2,2008 年版的表 A.2);
- ——增加了规定值的修约规则(见 B.3):
- ——增加了聚烯烃外护套代号(见 G.1.1);
- ——增加了阻燃电缆的产品表示方法(见 G.1.3);
- ——增加了成品电缆交货长度和标志要求(见 G.2.2 和 G.2.3);

GB/T 12706.3-2020

——增加了无卤阻燃护套电缆安装时环境温度推荐(见 G.3.1)。

本部分由中国电器工业协会提出。

本部分由全国电线电缆标准化技术委员会(SAC/TC 213)归口。

本部分起草单位:上海电缆研究所有限公司、上海国缆检测中心有限公司、中天科技海缆有限公司、远东电缆有限公司、扬州曙光电缆股份有限公司、江苏上上电缆集团有限公司、宝胜科技创新股份有限公司、江苏亨通电力电缆有限公司、浙江万马股份有限公司、青岛汉缆股份有限公司、中国电力科学研究院、杭州电缆股份有限公司、无锡江南电缆有限公司、金杯电工股份有限公司、广州南洋电缆有限公司、上海华普电缆有限公司、宁波球冠电缆股份有限公司、昆明电缆集团股份有限公司、杭州华新电力线缆有限公司、上海飞航电线电缆有限公司、福建南平太阳电缆股份有限公司、郑州华力电缆有限公司、乐星红旗电缆(湖北)有限公司、海南威特电气集团有限公司、兰州众邦电线电缆集团有限公司、上海浦东电线电缆(集团)有限公司、山东泰开电缆有限公司。

本部分主要起草人:孙建生、范玉军、谢书鸿、汪传斌、梁国华、李斌、房权生、管新元、刘焕新、王野、赵鹏、滕兆丰、马壮、阳文锋、王志辉、周雁、温尚海、习有建、郭海军、胡少中、范德发、冯西平、王柏译、黎驹、魏永乾、陈伟、李忠、夏俊峰、王子强、杜青。

本部分所代替标准的历次版本发布情况为:

- ——GB 12706.3—1991,GB/T 12706.3—2002,GB/T 12706.3—2008;
- ——GB 12706.1—1991

额定电压 1 $kV(U_m = 1.2 kV)$ 到 35 kV($U_m = 40.5 kV$)挤包绝缘电力电缆及附件 第 3 部分:额定电压 35 $kV(U_m = 40.5 kV)$ 电缆

1 范围

GB/T 12706 的本部分规定了用于配电网或工业装置中,额定电压 35 kV 固定安装的挤包绝缘电力电缆的结构、尺寸和试验要求。

本部分适用于纵向阻水结构电缆及其试验。

本部分不适用于特殊安装和运行条件的电缆,例如用于架空电缆、采矿工业、核电厂(安全壳内及其附近),以及用于水下或船舶的电缆。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 156 标准电压

- GB/T 2951.11—2008 电缆和光缆绝缘和护套材料通用试验方法 第 11 部分:通用试验方法——厚度和外形尺寸测量——机械性能试验
- GB/T 2951.12—2008 电缆和光缆绝缘和护套材料通用试验方法 第 12 部分:通用试验方法——热老化试验方法
- GB/T 2951.13—2008 电缆和光缆绝缘和护套材料通用试验方法 第13 部分:通用试验方法——密度测定方法——吸水试验——收缩试验
- GB/T 2951.14—2008 电缆和光缆绝缘和护套材料通用试验方法 第14部分:通用试验方法——低温试验
- GB/T 2951.21—2008 电缆和光缆绝缘和护套材料通用试验方法 第 21 部分:弹性体混合料专用试验方法——耐臭氧试验——热延伸试验——浸矿物油试验
- GB/T 2951.31—2008 电缆和光缆绝缘和护套材料通用试验方法 第 31 部分:聚氯乙烯混合料 专用试验方法——高温压力试验——抗开裂试验
- GB/T 2951.32—2008 电缆和光缆绝缘和护套材料通用试验方法 第 32 部分:聚氯乙烯混合料专用试验方法——失重试验热稳定性试验
- GB/T 2951.41—2008 电缆和光缆绝缘和护套材料通用试验方法 第 41 部分:聚乙烯和聚丙烯混合料专用试验方法——耐环境应力开裂试验——熔体指数测量方法——直接燃烧法测量聚乙烯中碳黑和(或)矿物质填料含量——热重分析法(TGA)测量碳黑含量——显微镜法评估聚乙烯中碳黑分散度
 - GB/T 3048.10 电线电缆电性能试验方法 第 10 部分:挤出护套火花试验
 - GB/T 3048.12 电线电缆电性能试验方法 第 12 部分:局部放电试验
 - GB/T 3048.13 电线电缆电性能试验方法 第 13 部分:冲击电压试验
 - GB/T 3956 电缆的导体

GB/T 12706.3-2020

- GB/T 6995.3 电线电缆识别标志方法 第3部分:电线电缆识别标志
- GB/T 7113.2 绝缘软管 第 2 部分:试验方法
- GB/T 8170 数值修约规则与极限数值的表示和判定
- - GB/T 11091 电缆用铜带
 - GB/T 12706.1 额定电压 1 kV(U_m =1.2 kV)到 35 kV(U_m =40.5 kV)挤包绝缘电力电缆及附件第 1 部分:额定电压 1 kV(U_m =1.2 kV)和 3 kV(U_m =3.6 kV)电缆
 - GB/T 16927.1 高电压试验技术 第1部分:一般定义及试验要求
- GB/T 17650.1 取自电缆或光缆的材料燃烧时释出气体的试验方法 第1部分:卤酸气体总量的测定
- GB/T 17650.2 取自电缆或光缆的材料燃烧时释出气体的试验方法 第2部分:用测量 pH 值和电导率来测定气体的酸度
- GB/T 18380.11 电缆和光缆在火焰条件下的燃烧试验 第 11 部分:单根绝缘电线电缆火焰垂直蔓延试验 试验装置
- GB/T 18380.12 电缆和光缆在火焰条件下的燃烧试验 第 12 部分:单根绝缘电线电缆火焰垂直 蔓延试验 1 kW 预混合型火焰试验方法
- GB/T 18380.13 电缆和光缆在火焰条件下的燃烧试验 第 13 部分:单根绝缘电线电缆火焰垂直 蔓延试验 测定燃烧的滴落(物)/微粒的试验方法
- GB/T 18380.33 电缆和光缆在火焰条件下的燃烧试验 第 33 部分:垂直安装的成束电线电缆火焰垂直蔓延试验 A 类
- GB/T 18380.34 电缆和光缆在火焰条件下的燃烧试验 第 34 部分:垂直安装的成束电线电缆火焰垂直蔓延试验 B 类
- GB/T 18380.35 电缆和光缆在火焰条件下的燃烧试验 第 35 部分:垂直安装的成束电线电缆火焰垂直蔓延试验 C 类
- GB/T 18380.36 电缆和光缆在火焰条件下的燃烧试验 第 36 部分:垂直安装的成束电线电缆火焰垂直蔓延试验 D类
 - GB/T 19666 阻燃和耐火电线电缆通则
 - JB/T 8137(所有部分) 电线电缆交货盘
 - JB/T 8996 高压电缆选择导则
 - JB/T 10696.6 电线电缆机械和理化性能试验方法 第 6 部分:挤出外套刮磨试验
- IEC 60229:2007 电力电缆 具有特殊保护作用的挤包外护套试验(Electric cables—Tests on extruded oversheaths with a special protective function)
- IEC 61034-2 电缆或光缆在特定条件下燃烧的烟密度测定 第2部分: 试验步骤和要求(Measurement of smoke density of cables burning under defined conditions—Part 2: Test procedure and requirements)
- ISO 48 硫化型或热塑型橡胶 硬度确定(硬度在 10 IRHD 和 100 IRHD 之间)(Rubber, vulcanized or thermoplastic—Determination of hardness (hardness between 10 IRHD and 100 IRHD))

3 术语和定义

下列术语和定义适用于本文件。

3.1 有关尺寸值术语

3.1.1

标称值 nominal value

指定的量值并经常用于表格之中。

注: 在本部分中,通常标称值引申出的量值在考虑规定公差下通过测量进行检验。

3.1.2

近似值 approximate value

既不保证也不检查的数值。

注:近似值可用于其他尺寸值的计算。

3.1.3

中间值 median value

将试验得到的若干数值以递增(或递减)的次序依次排列时,若数值的数目是奇数,中间的那个值; 若数值的数目是偶数,中间两个数值的平均值。

3.2 有关试验的术语

3.2.1

例行试验 routine tests

由制造方在成品电缆的所有制造长度上进行的试验,以检验所有电缆是否符合规定的要求。

3.2.2

抽样试验 sample tests

由制造方按规定的频度,在成品电缆试样上、或在取自成品电缆的某些部件上进行的试验,以检验电缆是否符合规定要求。

3.2.3

型式试验 type tests

按一般商业原则对本部分所包含的一种类型电缆在供货之前所进行的试验,以证明电缆具有满足预期使用条件的满意性能。

注:该试验的特点为除非电缆材料或设计或制造工艺的改变可能改变电缆的特性,试验做过以后就不需要重做。

3.2.4

安装后电气试验 electrical tests after installation

在安装后进行的试验,用以证明安装后的电缆及其附件完好。

4 电压标示和材料

4.1 额定电压

本部分中电缆的额定电压 $U_0/U(U_m)$ 标示为 21/35(40.5) kV 和 26/35(40.5) kV。 在电缆的电压标示 $U_0/U(U_m)$ 中:

- ——U。为电缆设计用的导体对地或金属屏蔽之间的额定工频电压;
- ——U 为电缆设计用的导体之间的额定工频电压;
- ——U_m 为设备可使用的"最高系统电压"的最大值(见 GB/T 156)。

对于一种给定应用电缆的额定电压应适合电缆所在系统的运行条件。为了便于选择电缆,将系统划分为下列三类:

——A 类:该类系统任一相导体与地或接地导体接触时,能在1 min 内与系统分离。

- ——B类:该类系统可在单相接地故障时作短时运行,接地故障时间按 JB/T 8996 不应超过 1 h。 对于本部分包括的电缆,在任何情况下允许不超过 8 h 的更长的带故障运行时间。任何一年 接地故障的总持续时间不应超过 125 h。
- ——C类:包括不属于 A 类、B 类的所有系统。
- 注: 宜认识到,在系统接地故障不能立即自动解除时,故障期间加在电缆绝缘上过高的电场强度,会在一定程度上缩短电缆寿命。如系统预期会经常地运行在持久的接地故障状态下,该系统可划为 C 类。

用于三相系统的电缆, U。的推荐值见表 1。

表 1 额定电压 U_0 推荐值

系统最高电压 U _m	额定电压 U。 kV	
kV	A类、B类	C类
40.5	21	26

4.2 绝缘混合料

绝缘混合料及其代号见表 2。

表 2 绝缘混合料

绝缘混合料	代号
交联聚乙烯	XLPE
乙丙橡胶或类似绝缘混合料(EPR 或 EPDM)	EPR
高弹性模数或高硬度乙丙橡胶	HEPR

各种绝缘混合料电缆的导体最高温度见表 3。

表 3 各种绝缘混合料电缆的导体最高温度

	导体最高温度	
绝缘混合料	绝缘混合料	
	正常运行	短路(最长持续 5 s)
交联聚乙烯(XLPE)	90	250
乙丙橡胶(EPR 和 HEPR)	90	250

表 3 中温度由绝缘混合料的固有特性决定,使用这些数据计算额定电流时还应考虑其他因素。

例如正常运行时,如果直接埋入地下的电缆按表 3 所示导体最高温度在连续负荷(100%负荷因数)下运行,电缆周围土壤的热阻系数经过一定时间后,会因土壤干燥而超过原始值。因此导体温度可能会超过最高温度。如果能预料这类运行条件,应采取足够的预防措施。

关于连续负荷载流量的导则可参照 JB/T 10181。

短路温度的导则可参照 IEC 61443。

4.3 护套混合料

不同类型护套混合料的电缆导体最高温度见表 4。

正常运行导体最高温度 护套混合料 代号 热塑性 ST_2 聚氯乙烯(PVC) 90 聚乙烯 ST_7 90 无卤阻燃材料 ST_8 90 弹性体 氯丁橡胶、氯磺化聚乙烯或类似聚合物 SE_1 85

表 4 不同类型护套混合料电缆的导体最高温度

5 导体

导体应为符合 GB/T 3956 的第2种镀金属层或不镀金属层退火铜导体,或是第2种铝或铝合金导体。第2种导体也可以是纵向阻水结构。

6 绝缘

6.1 材料

绝缘应为表 2 所列的一种挤包成型的介质。 无卤电缆的绝缘应符合表 5 规定。

表 5 无卤混合料的试验方法和要求

试验项目	单位	要求
酸气含量试验(GB/T 17650.1)		
溴和氯含量(以 HCl 表示),最大值	%	0.5
氟含量试验(GB/T 7113.2)		
氟含量,最大值	%	0.1
pH 值和电导率试验(GB/T 17650.2)		
pH 值,最小值		4.3
电导率,最大值	μS/mm	10

6.2 绝缘厚度

绝缘标称厚度见表 6。

导体或绝缘外面的任何隔离层或半导电屏蔽层的厚度不应包括在绝缘厚度之中。

绝缘混合料

交联聚乙烯(XLPE) 乙丙橡胶(EPR)

硬乙丙橡胶(HEPR)

导体标称截面积°	额定电压 $U_{\scriptscriptstyle 0}/\mathrm{U}(U_{\scriptscriptstyle \mathrm{m}})$ 下的绝缘标称厚度 $^{\scriptscriptstyle \mathrm{b}}$	
mm ²	1	mm
111111	21/35(40.5) k V	26/35(40.5)kV

10.5

表 6 绝缘标称厚度

* 不宜采用任何小于表中给出的导体截面积。然而,如果需要更小截面积,可用导体屏蔽来增加导体的直径(见 7.2)或增加绝缘厚度,以限制在试验电压下加在绝缘的最大电场强度不超过表中给出的最小导体尺寸计算得 出的场强值。

9.3

^b 对标称截面积大于 1 000 mm² 导体,可增加绝缘厚度以避免安装和运行时的机械伤害。

7 屏蔽

7.1 概述

所有电缆的绝缘线芯上应有分相的金属屏蔽层。

 $50 \sim 1.600$

单芯或三芯电缆绝缘线芯的屏蔽,应由导体屏蔽和绝缘屏蔽组成。

7.2 导体屏蔽

导体屏蔽应是非金属的,由挤包半导电料或在导体上先包半导电带再挤包半导电料组成。挤包半 导电层应与绝缘紧密结合,其与绝缘层的界面应光滑、无明显绞线凸纹,不应有尖角、颗粒、烧焦或擦伤 的痕迹。

7.3 绝缘屏蔽

绝缘屏蔽应由非金属半导电层与金属层组合而成。

每根绝缘线芯上应直接挤包与绝缘线芯紧密结合或可剥离的非金属半导电层,与绝缘层的界面应 光滑,不应有尖角、颗粒、烧焦或擦伤的痕迹。

需要时,可以在每根绝缘线芯上包覆一层半导电带。

金属屏蔽层应包覆在每根绝缘线芯的外面,并应符合第10章规

8 三芯电缆的缆芯、内衬层和填充

8.1 概述

三芯电缆缆芯的每根绝缘线芯上应有金属屏蔽层。

8.2 和 8.3 不适用于有护套单芯电缆成缆的缆芯。

8.2 内衬层与填充

8.2.1 结构

应采用挤包内衬层。

挤包内衬层前允许用合适的带子扎紧。

8.2.2 材料

用于内衬层和填充的材料应适合电缆的运行温度并与电缆绝缘材料相兼容。除纵向阻水型电缆外,内衬层和填充应采用非吸湿材料。内衬层和填充物也可采用半导电材料。

无卤电缆的内衬层和填充应符合表 5 规定。

8.2.3 挤包内衬层

挤包内衬层的标称厚度见表 7。

表 7 挤包内衬层厚度

缆芯假设直径		挤包内衬层标称厚度
m	mm	
_	€35.0	1.2
>35.0	≪45.0	1.4
>45.0	€60.0	1.6
>60.0	€80.0	1.8
>80.0	_	2.0

8.3 具有分相金属层的电缆缆芯(见第 10 章)

各个绝缘线芯的金属层应相互接触。

若电缆分相金属屏蔽缆芯外具有另外的同样金属材料的统包金属层(见第9章),电缆的缆芯外应包覆内衬层。内衬层和填充物应符合8.2规定。内衬层和填充物也可采用半导电材料。

当分相与统包金属层采用的金属材料不同时,应采用符合14.2 中规定的任一种材料挤包隔离套将其隔开。对于铅套电缆,铅套与分相包覆金属层之间的隔离,可采用符合8.2 规定的内衬层。

若电缆没有统包金属层(见第9章),只要电缆外形保持圆整,可省略内衬层。

9 单芯或三芯电缆的金属层

本部分包括以下类型的金属层:

- a) 金属屏蔽(见第 10 章);
- b) 同心导体(见第 11 章);
- c) 金属套铅套(见第 12 章);
- d) 金属铠装(见第 13 章)。

金属层应由上述的一种或几种型式组成,包覆在单芯电缆上或三芯电缆的单独绝缘线芯上时应是非磁性的。

可采取措施使金属层周围具有纵向阻水性能。

10 金属屏蔽

10.1 结构

金属屏蔽应由一根或多根金属带、金属编织、金属丝的同心层或金属丝与金属带的组合结构组成。金属屏蔽可以是金属套或是在统包屏蔽情况下符合 10.2 规定的铠装。

GB/T 12706.3-2020

选择金属屏蔽材料时,应特别考虑存在腐蚀的可能性,这不仅为了机械安全,也为了电气安全。 金属屏蔽的搭盖和间隙应符合 10.2 要求。

10.2 要求

- 10.2.1 金属屏蔽中铜丝屏蔽的电阻,适用时应符合 GB/T 3956 要求。铜丝屏蔽的标称截面应根据故障电流容量确定。
- 10.2.2 铜带屏蔽应由一根重叠绕包的软铜带组成。重叠绕包铜带间标称搭盖率为铜带宽度的 15%,最小搭盖率不应小于 5%。要求时,可采用其他结构。

屏蔽原材料软铜带应选择符合 GB/T 11091 规定的铜带。

铜带标称厚度为:

- ——单芯电缆:≥0.12 mm;
- ——三芯电缆:≥0.10 mm。

铜带的最小厚度不应小于标称值的90%。

10.2.3 标称截面积为 500 mm^2 及以上电缆的金属屏蔽应采用铜丝屏蔽结构。铜丝屏蔽应由疏绕的软铜线组成,表面可采用反向绕包的铜丝或铜带扎紧。相邻铜丝的平均间隙不应大于 4 mm。相邻铜丝平均间隙的定义和计算见 GB/T 11017.2-2014 中 6.5.2。金属屏蔽中铜丝屏蔽的总电阻,适用时应符合 GB/T 3956 要求。

11 同心导体

11.1 结构

同心导体的间隙应符合 10.2.3 要求。

选用同心导体结构和材料时,应特别考虑腐蚀的可能性,这不仅为了机械安全,也为了电气安全。

11.2 要求

同心导体的尺寸、物理性能及电阻值要求应符合 10.2 规定。

11.3 使用

如要求采用同心导体结构,可在三芯电缆的内衬层外,对单芯电缆也可以直接在绝缘上、半导电绝缘屏蔽层上或适当的内衬层外包覆同心导体层。

12 金属套铅套

铅套应采用铅或铅合金,并形成松紧适当的无缝铅管。

铅套的标称厚度应按式(1)计算:

式中:

tpb---铅套标称厚度,单位为毫米(mm);

D,---铅套前假设直径,单位为毫米(mm)。

假设直径计算应按附录 A 进行,计算结果应修约到一位小数(见附录 B)。

当标称厚度计算值小于 1.2 mm 时,铅套标称厚度取值为 1.2 mm,计算值应按附录 B 修约到一位小数。

13 金属铠装

13.1 金属铠装类型

本部分包括的铠装类型如下:

- a) 扁金属线铠装;
- b) 圆金属丝铠装;
- c) 双金属带铠装。

13.2 材料

圆金属丝或扁金属线应为镀锌钢丝、不锈钢丝(非磁性)、铜丝或镀锡铜丝、铝丝或铝合金丝。

金属带应为镀锌钢带、不锈钢带(非磁性)、铝带或铝合金带。钢带应采用工业等级的热轧或冷轧钢带。

在要求铠装钢丝层满足最小导电性的情况下,铠装层中允许包含足够的铜丝或镀锡铜丝,以确保达到要求。

选择铠装材料时,尤其是铠装作为屏蔽层时,应特别考虑腐蚀的可能性,这不仅为了机械安全,也为了电气安全。

除非采用特殊结构,用于交流系统单芯电缆的铠装应采用非磁性材料。

注:用于交流系统的单芯电缆以磁性材料为主的铠装即使采用特殊结构, 电缆载流量仍将大为降低。

13.3 铠装的应用

13.3.1 单芯电缆

单芯电缆的铠装层下应有挤包内衬层,厚度应符合8.2规定。

13.3.2 三芯电缆

三芯电缆需要铠装时,铠装应包覆在符合8.2规定的内衬层上。

13.3.3 隔离套

当铠装下的金属层与铠装材料不同时,应用14.2中规定的一种材料,挤包一层隔离套隔开。

隔离套应经受 GB/T 3048.10 规定的火花试验。

无卤电缆(ST₈)的隔离套应符合表 5 规定。

如铅套电缆要求有铠装层时,可采用隔离套或包带垫层,并应符合13.3.4规定。

如果在铠装层下采用隔离套,可以由其代替内衬层或附加在内衬层上。

在金属层周围具有纵向阻水结构的电缆可不采用隔离套。

隔离套的标称厚度应按式(2)计算:

式中:

 t_{ss} ——隔离套标称厚度,单位为毫米(mm);

D. ——隔离套前的假设直径,单位为毫米(mm)。

假设直径计算应按附录 A 进行,计算结果应修约到 0.1 mm(见附录 B)。

非铅套电缆隔离套标称厚度的计算值小于 1.2 mm 时,隔离套标称厚度取值为 1.2 mm。若隔离套直接挤包在铅套上,当隔离套标称厚度的计算值小于 1.0 mm 时,隔离套标称厚度取值为 1.0 mm。

13.3.4 铅套电缆铠装下的包带垫层

铅套涂层外的包带垫层应由浸渍纸带与复合纸带组成,或者由两层浸渍纸带与复合纸带外加一层或多层复合浸渍纤维材料组成。

垫层材料的浸渍剂可为沥青或其他防腐剂,对于金属丝铠装,这些浸渍剂不应直接涂敷到金属 丝下。

也可采用合成材料带代替浸渍纸带。

铅套与铠装之间的包带垫层在铠装后总厚度的近似值为 1.5 mm。

13.4 铠装金属丝和铠装金属带的尺寸

铠装金属丝和铠装金属带应优先采用下列标称尺寸:

- ——圆金属丝(细): 直径 2.0 mm、2.5 mm、3.15 mm;
- ----圆金属丝(粗):直径 4.0 mm;
- ----扁金属线:厚度 0.8 mm;
- ——钢带:0.5 mm、0.8 mm;
- ——铝或铝合金带:厚度 0.5 mm、0.8 mm。

13.5 电缆直径与铠装层尺寸的关系

铠装圆金属丝的标称直径和铠装金属带的标称厚度分别不应小于表8和表9规定的数值。

铠装前	铠装前假设直径	
mm		mm
_	€35.0	2.0
>35.0	≪60.0	2.5
>60.0	_	3 15.4 0

表 8 铠装圆金属丝标称直径

表 9 铠装金属带标称直径

铠装前假设直径		金属带标称厚度
mm		mm
>30.0	€70.0	0.5
>70.0	_	0.8

铠装前电缆假设直径大于 15.0 mm 的电缆,扁金属线的标称厚度应取 0.8 mm。电缆假设直径为 15.0 mm 及以下时,不应采用扁金属线铠装。

13.6 圆金属丝或扁金属线铠装

金属丝铠装应紧密,使相邻金属丝间的间隙很小。必要时,可在扁金属线铠装和圆金属丝铠装外疏绕一条标称厚度最小为 0.3 mm 的镀锌钢带,钢带厚度的偏差应符合 17.7.3 规定。

采用粗圆金属丝铠装时,当铠装下隔离套或内衬层的标称厚度计算值小于 2.0 mm 时,隔离套或内衬层的标称厚度应取值为 2.0 mm。

13.7 双金属带铠装

金属带铠装应螺旋绕包两层,使外层金属带的中间部位大致在内层金属带间隙上方,每层金属带间隙率不应大于50%。

14 外护套

14.1 概述

所有电缆都应有外护套。

外护套通常为黑色,但也可以按制造方和买方协议采用其他颜色,以适应电缆使用的特定环境。包覆在铠装、金属屏蔽或同心导体上的电缆外护套应经受 GB/T 3048.10 规定的火花试验。

14.2 材料

外护套应为热塑性材料(聚氯乙烯、聚乙烯或无卤阻燃材料)或弹性体材料(氯丁橡胶、氯磺化聚乙烯或类似聚合物)。

如果要求在火灾时电缆能阻止火焰的蔓延、发烟少以及没有卤素气体释放,应采用无卤阻燃型护套材料。无卤阻燃电缆(ST₈)的外护套应符合表 5 的规定。

外护套材料应与表 4 中规定的电缆运行温度相适应。

在特殊条件下(例如为了防白蚁)使用的外护套,可能有必要使用化学添加剂,但这些添加剂不应包括对人类及环境有害的材料。

14.3 厚度

若无其他规定,挤包外护套标称厚度值应按式(3)计算:

$$t_{\rm os} = 0.035 D_{\rm os} + 1.0$$

.....(3)

式中:

t_{os} ——外护套标称厚度,单位为毫米(mm);

 D_{os} ——挤包护套前电缆的假设直径,单位为毫米(mm)。

按式(3)计算出的数值应修约到 0.1 mm(见附录 B)。

当单芯电缆外护套标称厚度的计算值小于 1.4 mm 时,外护套标称厚度取值为 1.4 mm。当多芯电缆外护套标称厚度的计算值小于 1.8 mm 时,外护套标称厚度取值为 1.8 mm。

15 试验条件

15.1 环境温度

除非另有规定,试验应在环境温度(20±15)℃下进行。

15.2 工频试验电压的频率和波形

工频试验电压的频率应在 49 Hz~61 Hz,波形应基本上为正弦波,引用值为有效值。

15.3 冲击试验电压的波形

按 GB/T 3048.13 规定,冲击波应具有有效波前时间 1 μ s~5 μ s ,标称半峰值时间 40 μ s~60 μ s。 其他方面应符合 GB/T 16927.1。

15.4 电缆导体温度的确定

试验中电缆导体温度的确定可参照 GB/T 12706.2 规定的方法。

16 例行试验

16.1 概述

例行试验通常应在每一根电缆制造长度上进行(见 3.2.1)。根据购买方和制造方达成的质量控制协议,可以减少试验电缆的根数或采用其他的试验方法。

本部分规定的例行试验为:

- a) 导体电阻测量(见 16.2);
- b) 局部放电试验(见 16.3);
- c) 电压试验(见 16.4);
- d) 当电缆外护套上有半导电结构时,外护套直流耐压试验(见 16.5)。

16.2 导体电阻测量

应对例行试验中每一根电缆长度的所有导体进行电阻测量,如果有同心导体也包括在内。

成品电缆或从成品电缆上取下的试样,试验前应在保持适当温度的试验室内至少存放 12 h。若怀疑导体温度是否与室温一致,电缆应在试验室内存放 24 h 后测量。也可将导体试样放在温度可以控制的液体槽内至少 1 h 后测量电阻。

电阻测量值应按 GB/T 3956 给出的公式和系数校正到 20 ℃下 1 km 长度的数值。

每一根导体 20 $^{\circ}$ C时的直流电阻不应超过 GB/T 3956 规定的相应的最大值。标称截面积适用时,同心导体的电阻也应符合 GB/T 3956 规定。

铝合金导体的导体直流电阻要求与相同标称截面积的铝导体一致。

16.3 局部放电试验

应按 GB/T 3048.12 进行局部放电试验,试验灵敏度应为 10 pC 或更优。

三芯电缆的所有绝缘线芯都应试验,电压施加于每一根导体和金属屏蔽之间。

试验电压应逐渐升高到 2U。并保持 10 s,然后缓慢降到 1.73U。。

在 1.73U。下,应无任何由被试电缆产生的超过声明试验灵敏度的可检测到的放电。

注:被试电缆的任何放电都可能有害。

16.4 电压试验

16.4.1 概述

电压试验应在环境温度下采用工频交流电压进行。

除非购买方另有要求,制造方可任选以下程序进行例行电压试验:

- a) $3.5U_0, 5 \text{ min};$
- b) $2.5U_0$, 30 min.

16.4.2 单芯电缆试验步骤

单芯电缆的试验电压应施加在导体与金属屏蔽之间。

16.4.3 三芯电缆试验步骤

应在每一根导体与金属屏蔽层之间施加电压。 三芯电缆也可采用三相变压器,一次完成试验。

16.4.4 试验电压

对应额定电压的单相试验电压值见表 10。

表 10 例行试验电压

额定电压 U₀ kV	试验电压 3.5 U₀ kV	试验电压 2.5 U₀ kV
21	73.5	53
26	91	65

若用三相变压器同时对三芯电缆进行电压试验,相间试验电压应取表 10 所列数据的 1.73 倍。 在任何情况下,电压都应逐渐升高到规定值。

16.4.5 要求

绝缘应无击穿。

16.5 外护套耐压试验

适用时,对于外护套上有挤包半导电层的电缆,可按照 IEC 60229: 2007 中 3.1 规定进行外护套直流电压试验。

17 抽样试验

17.1 概述

本部分要求的抽样试验包括:

- a) 导体检查(见17.4);
- b) 尺寸检查(见 17.5~17.8、17.11);
- c) 电压试验(见 17.9);
- d) EPR、HEPR 和 XLPE 绝缘及弹性体护套的热延伸试验(见 17.10)。

17.2 抽样试验的频度

17.2.1 导体检查和尺寸检查

导体检查、绝缘和护套厚度测量以及电缆外径的测量应在每批同一型号和规格电缆中的一根制造长度的电缆上进行,但应限制不超过合同长度数量的 10%。

17.2.2 电气和物理试验

电气和物理试验应按商定的质量控制协议,在取自成品电缆的样品上进行试验。若无协议,在三芯电缆总长度大于 2 km 或单芯电缆总长度大于 4 km 时,应按表 11 规定的数量进行试验。

电缆长度 样品数 多芯电缆 单芯电缆 >2≤10 >4≤20 ≤20 ≤40 2 > 10>20 >20 ≪30 ≤60 >40 余类推 余类推 余类推

表 11 抽样试验样品数量

17.3 复试

如果任一试样没有通过第 17 章的任一项试验,应从同一批中再取两个附加试样对不合格项目重新试验。如果两个附加试样都合格,样品所取批次的电缆应认为符合本部分要求。如果加试样品中有一个试样不合格,则认为抽取该试样的这批电缆不符合本部分要求。

17.4 导体检查

应采用检查或可行的测量方法检查导体结构是否符合 GB/T 3956 规定。

17.5 绝缘和非金属护套厚度的测量(包括外护套、挤包隔离套和挤包内衬层)

17.5.1 概述

试验方法应符合 GB/T 2951.11-2008 第8章规定。

为试验而选取的每根电缆长度应从电缆的一端截取一段电缆来代表,如果必要,应将可能损伤的部分电缆先从该端截除。

17.5.2 对绝缘的要求

每一段绝缘线芯,最小测量值不应低于规定标称值的90%再减0.1 mm,见式(4):

式中:

t_{imin}——绝缘厚度最小测量值,单位为毫米(mm);

t_{in} ——绝缘标称厚度,单位为毫米(mm)。

同时,还应符合式(5)的规定:

$$\frac{t_{\text{imax}} - t_{\text{imin}}}{t_{\text{imax}}} \leqslant 0.15 \qquad \qquad \cdots \qquad (5)$$

式中:

t_{imax}——绝缘厚度最大测量值,单位为毫米(mm)。

17.5.3 对非金属护套要求

采用与外护套紧密粘结的挤包外半导电层结构时,挤包外半导电层的厚度可作为护套厚度的一部 14 分,最多不超过 0.3 mm。不考虑哑铃片的制作方式,包含挤包外半导电层的护套应满足该类型护套的 所有机械性能要求。

非金属护套厚度最小测量值不应小于规定标称值的80%再减0.2 mm,见式(6):

式中:

t_{smin}——非金属护套厚度最小测量值,单位为毫米(mm);

t_{sn} ——非金属护套标称厚度,单位为毫米(mm)。

17.6 铅套厚度测量

17.6.1 概述

根据制造方的意见应采用下列方法之一测量铅套最小厚度。铅套厚度不应低于规定标称值的95%再减0.1 mm,见式(7):

$$t_{\rm pb \ min} \geqslant 0.95 t_{\rm pb} - 0.1$$
 (7)

式中:

t_{pb min}——铅套厚度最小测量值,单位为毫米(mm)。

17.6.2 窄条法

应使用测量头平面直径为 4 mm~8 mm 的千分尺测量,测量精度为±0.01 mm。

测量应在取自成品电缆上的 50 mm 长的护套试样进行。试样应沿轴向剖开并仔细展平。将试样擦拭干净后,应沿展平的试样的圆周方向距边缘至少 10 mm 进行测量。应测取足够多的数值,以保证测量到最小厚度。

17.6.3 圆环法

应使用具有一个平测头和一个球形测头的千分尺,或具有一个平测头和一个长为 2.4 mm、宽为 0.8 mm的矩形平测头的千分尺进行测量。测量时球形测头或矩形测头应置于护套环的内侧。千分尺的精度应为±0.01 mm。

测量应在从样品上仔细切下的环形护套上进行。应沿着圆周上测量足够多的点,以保证测量到最小厚度。

17.7 铠装金属丝和金属带的测量

17.7.1 金属丝的测量

应使用具有两个平测头精度为±0.01 mm 的千分尺测量圆金属丝的直径和扁金属线的厚度。对圆金属丝应在同一截面上两个互成直角的位置上各测量一次,取二次测量的平均值作为金属丝的直径。

17.7.2 金属带的测量

应使用具有两个直径为 5 mm 平测头、精度为 $\pm 0.01 \text{ mm}$ 的千分尺进行测量。对带宽为 40 mm 及以下的金属带应在宽度中央测其厚度;对更宽的带子应在距其每一边缘 20 mm 处测量,取其平均值作为金属带厚度。

17.7.3 要求

铠装金属丝和金属带的尺寸低于13.5中给出标称尺寸的量值不应超过:

——圆金属丝:5%;

GB/T 12706.3-2020

- ----扁金属线:8%;
- ---金属带:10%。

17.8 外径测量

如果要求测量电缆外径,应按 GB/T 2951.11-2008 规定进行。

17.9 4 h 电压试验

17.9.1 取样

试验终端之间的一根成品电缆长度应至少为 5 m。

17.9.2 步骤

在环境温度下,每一导体与金属层间应施加工频电压 4 h。

17.9.3 试验电压

试验电压应为 4U。。对应于标准额定电压的试验电压值见表 12。

表 12 抽样试验电压

额定电压 U₀	试验电压 4 U。
kV	kV
21	84
26	104

试验电压应逐渐升高到规定值,并持续4h。

17.9.4 要求

绝缘不应发生击穿。

17.10 EPR、HEPR 和 XLPE 绝缘和弹性体护套热延伸试验

17.10.1 步骤

取样和试验步骤应按 GB/T 2951.21-2008 第 9 章进行。试验条件见表 13 和表 14。

17.10.2 要求

EPR、HEPR 和 XLPE 绝缘的试验结果应符合表 13 规定,SEL 护套应符合表 14 规定。

表 13 各种热固性绝缘混合料特殊性能试验要求

试 验 项 目 (混合料代号见 4.2)	单位	EPR	HEPR	XLPE
耐臭氧试验(GB/T 2951.21—2008 中第 8 章)				
臭氧浓度(按体积)	%	0.025~0.030	0.025~0.030	_
无开裂试验持续时间	h	24	24	_

表 13 (续)

试 验 项 目 (混合料代号见 4.2)	单位	EPR	HEPR	XLPE
热延伸试验(GB/T 2951.21-2008 中第 9 章)				
处理条件:				
空气温度(偏差±3 K)	℃	250	250	200
——机械应力	N/cm ²	20	20	20
载荷下最大伸长率	%	175	175	175
冷却后最大永久伸长率	%	15	15	15
吸水试验(GB/T 2951.13-2008 中 9.2 重量法)				
温度(偏差±2 K)	℃	85	85	85
持续时间	h	336	336	336
重量最大增量	mg/cm ²	5	5	1ª
收缩试验(GB/T 2951.13—2008 中第 10 章)				
标志间长度 L	mm	_	_	200
温度(偏差±3 K)	℃	_	_	130
持续时间	h	_	_	1
最大允许收缩率	%	_	_	4
硬度测定(见附录 C)				
IRHD ^b ,最小		_	80	_
弹性模量测定(见 19.21)				
150%伸长率下的弹性模量,最小	N/mm ²	_	4.5	

[。]对于密度大于1 g/cm³ 的 XLPE 应考虑吸水量增加大于1 mg/cm²。

表 14 弹性体护套特殊性能试验要求

试验项目 (混合料代号见1.3)	单位	SE ₁
浸油后机械性能试验(GB/T 2951.21—2008 中第 10 章和		
GB/T 2951.11—2008 中第 9 章)		
处理条件:		
——油温(偏差±2 K)	$^{\circ}$	100
——持续时间	h	24
最大允许变化率。:		
——抗张强度	%	± 40
——断裂伸长率	%	± 40
热延伸(GB/T 2951.21-2008 中第 9 章)		
处理条件:		
温度(偏差±3 K)	$^{\circ}$	200
——机械应力	N/cm²	20
负载下允许最大伸长率	%	175
冷却后最大永久伸长率	%	15
^a 处理前后得出的中间值之差值除以处理前中间值,以百分数表	示。	_

b IRHD 为国际橡胶硬度级。

17.11 绕包搭盖率和间隙率

搭盖率和间隙率的测量方法应符合 GB/T 12706.1 的规定。

铜带屏蔽最小搭盖率应符合 10.2.2 的规定。

铠装金属带间隙率应符合13.7的规定。

18 电气型式试验

18.1 概述

具有特定电压和导体截面积的一种型式的电缆通过了本部分的型式试验后,对于具有其他导体截面积和/或额定电压的电缆型式批准仍然有效,只要满足下列3个条件:

- a) 绝缘和半导电屏蔽材料以及所采用的制造工艺相同;
- b) 导体截面积不大于已试电缆,但是如果已试电缆的导体截面积为 $95 \text{ mm}^2 \sim 630 \text{ mm}^2$ (含)之间,则 630 mm^2 及以下的所有电缆也有效:
- c) 额定电压不高于已试电缆。

型式批准与导体材料无关。

18.2 样品

应从成品电缆中取长度为 10 m~15 m 的电缆试样接 18.3 进行试验。

除 18.4 的例外,所有 18.3 所列的试验应依次在同一试样上进行。

三芯电缆的每项试验或测量应在所有绝缘线芯上进行。

18.11 规定的半导电屏蔽电阻率测量,应在另外的试样上进行。

18.3 试验顺序

正常试验的顺序应如下:

- a) 弯曲试验及随后的局部放电试验(见 18.5 和 18.6);
- b) tan∂测量(见 18.7);
- c) 加热循环试验及随后的局部放电试验(见 18.8);
- d) 冲击电压试验及随后的工频电压试验(见 18.9);
- e) 4 h 电压试验(见 18.10)。

18.4 特殊条款

tanò 测量可以在没有按 18.3 正常试验顺序作过试验的另一个试样进行。

试验项目 18.3e)可取一个新的试样进行,但该试样应预先进行过 18.3 中的 a)项和 c)项试验。

18.5 弯曲试验

在室温下试样应围绕试验圆柱体(例如线盘的简体)至少绕一整圈,然后松开展直,再在相反方向上重复此过程。

此操作循环应进行 3 次。

试验圆柱体的直径不应大于:

——铅套或纵包复合金属箔电缆:

- 25(d+D)×(1+5%)单芯电缆;
- 20(d+D)×(1+5%)三芯电缆。

——其他类型电缆:

- 20(*d*+*D*)×(1+5%)单芯电缆;
- 15(d+D)×(1+5%)三芯电缆。

式中:

D ——电缆外径,单位为毫米(mm),按 17.8 测量;

d ——导体的实测直径,单位为毫米(mm)。

如果导体不是圆形,导体直径应按式(8)计算:

$$d = 1.13 \sqrt{S}$$

式中:

S——导体标称截面积,单位为平方毫米(mm²)。

本试验完成后,试样应即进行局部放电试验,并应符合18.6规定。

18.6 局部放电试验

应按 GB/T 3048.12 进行局部放电试验,试验灵敏度应为 5 pC 或更优

三芯电缆的所有绝缘线芯都应试验,电压施加于每一根导体和金属屏蔽之间。

试验电压逐渐升高到 2U。并保持 10 s,然后缓慢降到 1.73 U。。

在 1.73 U。下,应无任何由被试电缆产生的超过声明试验灵敏度的可检测到的放电。

注:被试电缆的任何放电都可能有害。

18.7 tanδ 测量

成品电缆试样应采用下述方法之一加热:

- ——试样应放置在液体槽或烘箱中;
- ——在试样的金属屏蔽层或导体或两者都通电流加热。

试样应加热至导体温度超过电缆正常运行时导体最高温度 5 K~10 K。

每一方法中,导体的温度应或者通过测量导体电阻确定,或者用放在液体槽、烘箱内或放在屏蔽层表面上,或放在与被测电缆相同的另一根同样加热的参照电缆上的测温装置进行测量。

在交流电压不低于 2 kV 和上述规定温度下进行 tand 测量。

测量值不应高于表 15 的规定。

表 15 电缆绝缘的电气型式试验要求

试验项目和试验条件	单位	性能要求			
(混合料代号见 4.2)	平位	EPR/HEPR	XLPE		
正常运行时导体最高温度(见 4.2)	℃	90	90		
tanδ(见 18.7)					
——超过正常运行时导体最高温度 5 K~10 K, tanδ 最大值	$\times 10^{-4}$	50	10		

18.8 热循环试验及随后的局部放电试验

经过上述各项试验后的试样应在试验室的地面上展开,并在试样导体上通以电流加热,直至导体达

GB/T 12706.3—2020

到稳定温度,此温度应超过电缆正常运行时导体最高温度 5 K~10 K。

三芯电缆的加热电流应通过所有导体。

加热循环应持续至少8h,在每一加热过程中,导体应在达到规定温度后至少维持2h。随后应在空气中自然冷却至少3h,使导体温度不超过环境温度10 K。

此循环应重复20次。

第20个循环后,试样应进行局部放电试验并应符合18.6规定。

18.9 冲击电压试验及随后的工频电压试验

试验应在超过电缆正常运行时导体最高温度 5 K~10 K 的温度下进行。

按 GB/T 3048.13 规定的步骤施加冲击电压,电压峰值应为 200 kV。

注: 也可采用供方与买方协议商定的其他数值。

电缆的每一个绝缘线芯应耐受 10 次正极性和 10 次负极性冲击电压而不击穿。

在冲击电压试验后,电缆试样的每一绝缘线芯应在室温下进行 $2.5~U_{\circ}$, $15~\min$ 工频电压试验。绝缘不应发生击穿。

18.10 4 h 电压试验

本试验应在室温下进行。应在试样的导体和屏蔽之间施加工频交流电压 4 h。 试验电压应为 4 U。。电压应逐渐升高至规定值。绝缘不应发生击穿。

18.11 半导电屏蔽电阻率

18.11.1 一般规定

挤包在导体上和绝缘上半导电屏蔽的电阻率,应在取自电缆绝缘线芯上的试样上进行测量,绝缘线芯应分别取自制造好的电缆样品和进行过按 19.7 规定的材料相容性试验老化处理后的电缆样品。

18.11.2 步骤

试验步骤应按附录D进行。

应在电缆正常运行时导体最高温度±2 K 范围内进行测量。

18.11.3 要求

在老化前和老化后,电阻率不应超过下列数值:

- ----导体屏蔽:1 000 Ω m;
- ——绝缘屏蔽:500 Ω·m。

19 非电气型式试验

19.1 概述

本部分要求的非电气型式试验项目见表 16。

表 16 非电气型式试验

试 验 项 目	绝缘		护套				
(混合料代号见 4.2 和 4.3)	EPR	HEPR	XLPE	ST_2	ST ₇	ST ₈	SE_1
尺寸							
厚度测量	×	×	×	×	×	×	×
机械性能(抗张强度和断裂伸长率)							
老化前	×	×	×	×	×	×	\times
空气烘箱老化后	×	×	×	×	×	×	×
成品电缆段老化	×	×	×	×	×	×	\times
浸入热油后				_			\times
热塑性能							
高温压力试验(凹痕)				×	×	×	—
低温性能				×		×	—
其他各类试验							
空气烘箱失重		_	_	×			_
热冲击试验(开裂)		_	_	×			
耐臭氧试验	×	×	_	_			
热延伸试验	×	×	×	_			\times
吸水试验	×	×	×	_		×	
收缩试验			×	_	×	_	_
外护套刮磨试验		_	_	×	×	_	\times
碳黑含量 ^a		_	_	_	×	<i> →</i>	_
硬度试验		×	_	_	_ (_
弹性模量试验		×	_	_	-4/		_
可剥离试验b					1		
透水试验。					**		
金属箔粘结强度 [。]							
燃烧特性试验							
电缆的单根阻燃试验(要求时)			_	×/_\/	e	e	\times
电缆的成束阻燃试验		_	_		e	e	е
烟密度试验		_		\mathcal{A}	_	×	_
酸气含量试验	d	d	d A	7-	_	×	_
pH 值和电导率	d	d	d J	1/2-	_	×	_
氟含量试验	d	d	d	_	_	×	_

注 1: ×表示型式试验项目。

注 2: 一表示不适用。

- * 仅适用于黑色外护套。
- ^b 用于制造方申明采用可剥离绝缘屏蔽电缆的设计中。
- 。 用于制造方申明采用纵向阻水屏障电缆的设计中。
- ^d 仅适用于绝缘材料为 EPR、HEPR 和 XLPE 的无卤电缆。
- 。 仅当制造商申明电缆有阻燃特性时进行。

GB/T 12706.3-2020

19.2 绝缘厚度测量

19.2.1 取样

应从每一根绝缘线芯上各取一个样品。

19.2.2 步骤

应按 GB/T 2951.11—2008 的 8.1 进行测量。

19.2.3 要求

见 17.5.2。

- 19.3 非金属护套厚度测量(包括外护套、挤包隔离套、挤包内衬层)
- 19.3.1 取样

应取一个电缆试样。

19.3.2 步骤

应按 GB/T 2951.11—2008 的 8.2 进行测量。

19.3.3 要求

见 17.5.3。

- 19.4 铅套厚度测量
- 19.4.1 取样

准备一个电缆试样。

19.4.2 步骤

应按 17.6.2 或 17.6.3 进行测量。

19.4.3 要求

见 17.6.1。

- 19.5 老化前后绝缘的机械性能试验
- 19.5.1 取样

应按 GB/T 2951.11—2008 的 9.1 取样和制备试片。

19.5.2 老化处理

老化处理应在表 17 规定的条件下,按 GB/T 2951.12—2008 的 8.1 进行。

试验项目 EPR HEPR 单位 **XLPE** (混合料代号见 4.2) 正常运行时导体最高温度(见 4.2) $^{\circ}$ C 90 90 90 老化前(GB/T 2951.11-2008 中 9.1) 抗张强度,最小 N/mm^2 4.2 8.5 12.5 断裂伸长率,最小 % 200 200 200 空气烘箱老化后(GB/T 2951.12-2008 中 8.1) 处理条件: --温度(偏差±3 K) $^{\circ}$ C 135 135 135 ---持续时间 168 168 168 h 抗张强度: 一老化后数值,最小 N/mm^2 ——变化率⁸,最大 % ± 25 ± 30 ± 30 断裂伸长率: 一老化后数值,最小 一变化率^a,最大 ± 30 ± 30 ± 25

表 17 电缆绝缘机械性能试验要求(老化前后)

19.5.3 预处理和机械性能试验

应按 GB/T 2951.11—2008 的 9.1 进行试片的预处理和机械性能试验。

19.5.4 要求

试片老化前和老化后的试验结果均应符合表 17 规定。

* 老化前后得出的中间值之差值除以老化前中间值,以百分数表示。

19.6 非金属护套老化前后的机械性能试验

19.6.1 取样

应按 GB/T 2951.11-2008 的 9.2 取样和制备试片。

19.6.2 老化处理

老化处理应在表 18 规定的条件下,按 GB/T 2951.12-2008 的 8.1 进行。

19.6.3 预处理和机械性能试验

应按 GB/T 2951.11-2008 的 9.2 进行试片的预处理和机械性能试验。

19.6.4 要求

试片老化前和老化后的试验结果均应符合表 18 的规定。

19.7 成品电缆段的附加老化试验

19.7.1 概述

本试验旨在检验电缆绝缘和非金属护套与电缆中的其他材料接触有无造成运行中劣化倾向。

GB/T 12706.3-2020

本试验适用于任何类型的电缆。

19.7.2 取样

应按 GB/T 2951.12—2008 的 8.1.4 从成品电缆上截取试样。

19.7.3 老化处理

电缆样品的老化处理应按 GB/T 2951.12-2008 的 8.1.4,在空气烘箱中进行。老化条件如下:

- ——温度:高于电缆正常运行时导体最高温度(见表 17)(10±2)K;
- ——周期:7×24 h。

19.7.4 机械性能试验

取自老化后电缆段试样的绝缘和护套试片,应按 GB/T 2951.12—2008 的 8.1.4 进行机械性能试验。

19.7.5 要求

老化前和老化后抗张强度与断裂伸长率中间值的变化率(见 19.5 和 19.6)不应超过空气烘箱老化后的规定值。绝缘的规定值见表 17,非金属护套的规定值见表 18。

表 18 护套机械性能试验要求(老化前后

试 验 项 目 (混合料代号见 4.3)	单位	ST_2	ST ₇	ST ₈	SE_1	
正常运行时导体最高温度(见 4.3)	℃	90	90	90	85	
老化前(GB/T 2951.11—2008 中 9.2)						
抗张强度,最小	N/mm^2	12.5	12.5	9.0	10.0	
断裂伸长率,最小	9/0	150	300	125	300	
空气烘箱老化后(GB/T 2951.12-2008 中 8.1)						
处理条件:						
——温度(偏差±2 K)	°C	100	110	100	100	
——	h	168	240	168	168	
抗张强度:						
——老化后数值,最小	N/mm^2	12.5		9.0	_	
——变化率°,最大	9/0	± 25		±40	± 30	
断裂伸长率:						
——老化后数值,最小	%	150	300	100	250	
——变化率°,最大	%	± 25	_	±40	± 40	
* 老化前后得出的中间值之差值除以老化前中间值,以百分数表示。						

^{*} 老化前后得出的中间值之差值除以老化前中间值,以百分数表示。

19.8 ST₂型 PVC 护套失重试验

19.8.1 步骤

应按 GB/T 2951.32-2008 的 8.2 取样和进行试验。

19.8.2 要求

试验结果应符合表 19 规定。

-15

-15

150

1

试验项目 单位 ST_2 (混合料代号见 4.3) 空气烘箱中失重试验(GB/T 2951.32-2008 中 8.2) 处理条件: ---温度(偏差±2 K) $^{\circ}$ 100 ---持续时间 168 最大允许失重量 mg/cm^2 1.5 高温压力试验(GB/T 2951.31-2008 中第8章) 温度(偏差±2 K) $^{\circ}$ C 90 低温性能试验*(GB/T 2951.14-2008 中第 8 章)未经老化前进行 试验 直径<12.5 mm 的低温弯曲试验 温度(偏差±2 K) $^{\circ}\!\mathbb{C}$ -15

 $^{\circ}$

 $^{\circ}$

 $^{\circ}$ C

h

表 19 PVC 护套特殊性能试验要求

温度(偏差±3 K)

持续时间

哑铃片的低温拉伸试验 温度(偏差±2 K)

温度(偏差±2 K)

热冲击试验(GB/T 2951.31 2008 中第 9 章)

* 因气候条件,购买方可以要求采用更低的温度。

低温冲击试验

19.9.1 步骤

高温压力试验应按 GB/T 2951.31-2008 中第 8 章的试验方法及表 19、表 20 和表 21 给出的试验条件进行。

表 20	PE(热塑性聚乙烯)护套特殊性能试验要求

试 验 项 目 (混合料代号见 4.3)	单位	ST_7
密度*(GB/T 2951,13—2008 中第 8 章)		
碳黑含量(仅适于黑色护套) (GB/T 2951.41—2008 中第 11 章)		
标称值	%	2.5
偏差	%	\pm 0.5
收缩试验(GB/T 2951.13-2008 中第 11 章)		
温度(偏差±2 K)	℃	80
加热持续时间	h	5
加热周期		5
最大允许收缩	%	3
高温压力试验(GB/T 2951.31—2008 中 8.2)		
温度(偏差±2 K)	℃	110
* 密度的测定仅在其他试验需要时才做。		

^{19.9} 护套的高温压力试验

表 21 无卤护套特殊性能试验要求

试 验 项 目 (混合料代号见 4.3)	单位	ST_8		
高温压力试验(GB/T 2951.31-2008 中第 8 章)				
温度(偏差±2 K)	$^{\circ}$	80		
低温性能试验*(GB/T 2951.14-2008 中第 8 章)未经老化前进行试验				
直径<12.5 mm 的低温弯曲试验				
温度(偏差±2 K)	$^{\circ}$ C	-15		
哑铃片的低温拉伸试验				
温度(偏差±2 K)	$^{\circ}\mathbb{C}$	-15		
低温冲击试验				
温度(偏差±2 K)	$^{\circ}$	-15		
吸水试验(GB/T 2951.13-2008 中 9.2 重量法)				
温度(偏差±2 K)	$^{\circ}$	70		
持续时间	h	24		
最大增加重量	mg/cm ²	10		
。因气候条件,购买方可以要求采用更低的温度。				

19.9.2 要求

试验结果应符合 GB/T 2951.31-2008 中第 8 章的规定。

19.10 PVC 护套和无卤护套的低温性能试验

19.10.1 步骤

应按 GB/T 2951.14-2008 第 8 章取样和进行试验,试验温度见表 19 和表 21

19.10.2 要求

试验结果应符合 GB/T 2951.14-2008 中第 8 章的规定。

19.11 PVC 护套抗开裂试验(热冲击试验)

19.11.1 步骤

应按 GB/T 2951.31—2008 第 9 章取样和进行试验,试验温度和加热持续时间见表 19。

19.11.2 要求

试验结果应符合 GB/T 2951.31-2008 中第 9 章的规定。

19.12 EPR 和 HEPR 绝缘耐臭氧试验

19.12.1 步骤

应按 GB/T 2951.21-2008 第 8 章取样和进行试验。臭氧浓度和试验持续时间应符合表 13 规定。

19.12.2 要求

试验结果应符合 GB/T 2951.21-2008 中第 8 章的规定。

19.13 EPR、HEPR 和 XLPE 绝缘和弹性体护套的热延伸试验

应按 17.10 取样和进行试验,并应符合 17.10 规定。

19.14 弹性体护套的浸油试验

19.14.1 步骤

应按 GB/T 2951,21-2008 的第 10 章取样和进行试验,试验条件应符合表 14 规定。

19.14.2 要求

试验结果应符合表 14 规定。

19.15 绝缘吸水试验

19.15.1 步骤

应按 GB/T 2951.13-2008 的 9.2 取样和进行试验。试验条件应符合表 13 规定。

19.15.2 要求

试验结果应符合表 13 规定。

19.16 燃烧特性试验

19.16.1 电缆的单根阻燃试验

该试验适用于 ST₂ 或 SE₁ 护套的电缆,且仅有特别要求时才进行试验。 对于其他材料护套的电缆,当制造商申明电缆有单根阻燃特性时应进行试验。 试验要求和方法应符合 GB/T 18380.11、GB/T 18380.12、GB/T 18380.13 规定。

19.16.2 电缆的成束阻燃试验

该试验适用于ST。无卤护套的电缆。

对于其他材料护套的电缆,当制造商申明电缆有成束阻燃特性时应进行试验。

应根据申明的类别进行成束阻燃试验,阻燃 A 类、阻燃 B 类、阻燃 C 类、阻燃 D 类的试验要求和方法应分别符合 GB/T 18380.33、GB/T 18380.34、GB/T 18380.35、GB/T 18380.36 的规定。

19.16.3 烟密度试验

该试验适用于 ST。无卤护套的电缆。 试验步骤和要求应符合 IEC 61034-2 规定。

19.16.4 酸气含量

19.16.4.1 步骤

该试验适用于非金属 ST₈ 材料作为外护套的无卤电缆。试验方法应符合 GB/T 17650.1 规定。

19.16.4.2 要求

试验结果应符合表 5 规定。

19.16.5 pH 值和电导率试验

19.16.5.1 步骤

该试验适用于非金属 ST₈ 材料作为外护套的无卤电缆。 试验方法应符合 GB/T 17650.2 的规定。

19.16.5.2 要求

试验结果应符合表 5 规定。

19.16.6 氟含量试验

19.16.6.1 步骤

该试验适用于非金属 ST₈ 材料作为外护套的无卤电缆。试验方法应符合 GB/T 7113.2 的规定。

19.16.6.2 要求

试验结果应符合表 5 的规定。

19.17 黑色 PE 护套碳黑含量测定

19.17.1 步骤

非阻燃型护套碳黑含量应按 GB/T 2951.41—2008 中第 11 章的规定取样和进行试验。阻燃型外护套的碳黑含量试验要求和试验方法由供需双方商定。

19.17.2 要求

试验结果应符合表 20 的规定。

19.18 XLPE 绝缘收缩试验

19.18.1 步骤

应按 GB/T 2951.13—2008 的第 10 章取样和进行试验,试验条件应符合表 13 规定。

19.18.2 要求

试验结果应符合表 13 规定。

19.19 挤包外护套刮磨试验

试样经 18.5 规定的弯曲试验后,应按 JB/T 10696.6 进行刮磨试验。

将经过刮磨试验的试样在室温下浸入 0.5%(质量分数)氯化钠和大约 0.1%(质量分数)非离子型表面活性剂水溶液中至少 24 h。

将金属屏蔽和铠装作为负极,在负极和盐溶液之间施加直流电压 20 kV,历时 1 min。然后施加雷电冲击电压 20 kV,正负极性各 10 次。试样不应击穿。

将试样从溶液中取出,剥下包含刮磨部位 1 m 长的护套,用肉眼观察护套内外表面,应无裂缝和开裂。

19.20 HEPR 绝缘硬度测量

19.20.1 步骤

应按附录C取样和进行测量。

19.20.2 要求

试验结果应符合表 13 规定。

19.21 HEPR 绝缘弹性模量测定

19.21.1 步骤

应按 GB/T 2951.11-2008 的第 9 章取样、制备试片和进行测定。

应测量伸长为 150%时所需的负荷。相应的应力应用测得的负荷除以试片未放伸前的截面积计算得到。应确定应力与应变的比值,以得到伸长率为 150%时的弹性模量。

弹性模量应取全部测量结果的中间值。

19.21.2 要求

试验结果应符合表 13 规定。

19.22 PE 护套收缩试验

19.22.1 步骤

应按 GB/T 2951.13—2008 的第 11 章取样和进行试验,试验条件应符合表 20 的规定。

19.22.2 要求

试验结果应符合表 20 的规定。

19.23 绝缘屏蔽的可剥离性试验

19.23.1 概述

当制造方申明采用的挤包半导电绝缘屏蔽为可剥离型时,应进行本试验。

19.23.2 步骤

试验应在老化前和老化后的样品上各进行 3 次,可在 3 个单独的电缆试样上进行试验,也可在同一个电缆试样上沿圆周方向彼此间隔约 120°的 3 个不同位置上进行试验。

应从老化前和按 19.7.3 老化后的被试电缆上取下长度至少 250 mm 的绝缘线芯。

在每一个试样的挤包绝缘屏蔽表面上从试样的一端到另一端向绝缘纵向切割成两道彼此相隔宽 (10±1) mm 相互平行的深入绝缘的切口。

沿平行于绝缘线芯方向(即剥切角近似于 180°)拉开长 50 mm、宽 10 mm 的条形带后,将绝缘线芯垂直地装在拉力机上,用一个夹头夹住绝缘线芯的一端,将 10 mm 条形带夹在另一个夹头上。

施加使 10 mm 条形带从绝缘分离的拉力,拉开至少 100 mm 长的距离。应在剥离角近似 180 °和速度为(250±50) mm/min 条件下测量拉力。

试验应在(20±5) ℃温度下进行。

对未老化和老化后的试样应连续地记录剥离力的数值。

19.23.3 要求

从老化前后的试样绝缘上剥下挤包半导电屏蔽的剥离力不应小于 8 N 且不应大于 45 N。 绝缘表面应无损伤及残留的半导电屏蔽痕迹。

19.24 透水试验

当制造方声称采用了纵向阻水屏障电缆的设计时,应进行透水试验。本试验的目的是满足地下埋设电缆的要求,而不适用于水底电缆。

本试验用于下列电缆设计:

- a) 在金属层附近具有纵向阻水屏障;
- b) 沿着导体具有纵向阻水屏障。

试验装置、取样和试验步骤应按附录E规定。

当电缆具有径向阻水的金属箔复合护层时,应进行附录 F的试验。

19.25 无卤护套的吸水试验

19.25.1 步骤

应按 GB/T 2951.13-2008 中 9.2 的规定取样和进行试验,试验条件应符合表 21 规定。

19.25.2 要求

试验结果应符合表 21 规定。

20 安装后电气试验

20.1 概述

试验应在电缆及其附件安装完成后进行。

宜按照 20.2 进行外护套的直流电压试验,并在有要求时按 20.3 进行绝缘试验。对于只进行外护套的直流电压试验的情况,可以用买方和供方认可的质量保证程序代替绝缘试验。

20.2 外护套的直流电压试验

应在电缆的每相金属套或金属屏蔽与接地之间施加 IEC 60229: 2007 第 5 章规定的直流电压及持续时间。

为了有效试验,应使外护套的全部外表面接地良好。外护套上的导电层能够帮助达到此目的。

20.3 绝缘试验

按供方与买方协议,可以采用下列 a)项或 b)项交流电压试验:

- a) 电压波形应基本为正弦波,频率为 20 Hz \sim 300 Hz。试验电压应为 2 U_0 ,持续 60 min;
- b) 作为替代,在导体与金属屏蔽间施加正常系统额定电压 U₀,持续 24 h₀
- 注 1: 交流电压试验期间,可同时监测 tand 和(或)局部放电。
- **注 2**: 对已运行电缆线路,可采用较低电压和/或较短时间进行试验。试验电压和时间与已运行时间、环境条件、击 穿历史以及试验目的相关,由供方与买方协商确定。

21 电缆产品的补充条款

电缆产品的补充条款包括电缆型号和产品表示方法、产品验收规则、成品电缆标志、电缆包装、运输和贮存以及安装条件,见附录 G 规定。

附 录 A (规范性附录) 确定护层尺寸的假设计算方法

A.1 概述

电缆护层如护套和铠装,其厚度通常与电缆标称直径有一个"阶梯表"的关系。

有时候会产生一些问题,计算出的标称直径不一定与生产出的电缆实际尺寸相同。在边缘情况下,如果计算直径稍有偏差,护层厚度与实际直径不相符合,就会产生疑问。不同制造方的成型导体尺寸变化、计算方法不同会引起标称直径不同和由此导致使用在基本设计相同的电缆上的护层厚度不同。

为了避免这些麻烦,而采取假设计算方法。这种计算方法忽略形状和导体的紧压程度而根据导体标称截面积、绝缘标称厚度和电缆芯数,利用公式计算假设直径。这样护套厚度和其他护层厚度都可通过公式或表格而与假设直径有了相应的关系。假设直径计算的方法明确规定,使用的护层厚度是唯一的,与实际制造中的细微差别无关。这就使电缆设计标准化,可以预先计算每一个导体截面的护层厚度尺寸。

假设直径仅用来确定护套和电缆护层的尺寸,不是代替精确计算标称直径所需的实际过程,实际标称直径计算应分开计算。

采用下述规定的电缆各种护层厚度的假设计算方法,是为了保证消除在单独计算中引起的任何差异,例如由于导体尺寸的假设以及标称直径和实际直径之间不可避免的差异。

所有厚度值和直径都应按附录 B 中规则修约到一位小数。

扎带(例如反向螺旋绕包在铠装外的扎带)如果不厚于 0.3 mm,在此方法中忽略。

A.2 方法

A.2.1 导体

不考虑形状和紧压程度如何,每一标称截面导体的假设直径 (d_1) 见表 A.1。

表 A.1 导体的假设直径

导体标称截面积	$d_{\rm L}$	导体标称截面积	$d_{ extsf{L}}$
mm ²) mm	mm^2	mm
F.0.		400	20.4
50	8.0	400	22.6
70	9.4	500	25.2
95	11.0	630	28.3
120	12.4	800	31.9
150	13.8	1 000	35.7
185	15.3	1 200	39.1
240	17.5	1 400	42.2
300	19.5	1 600	45.1

A.2.2 绝缘线芯

任何绝缘线芯的假设直径(D_c)应按式(A.1)计算:

$$D_{c} = d_{L} + 2t_{in} + 3.0$$
 (A.1)

式中:

D。——绝缘线芯假设直径,单位为毫米(mm);

d_L ——导体假设直径,单位为毫米(mm)。

如果采用金属屏蔽或同心导体,则应按 A.2.5 考虑增大绝缘线芯的标称直径。

A.2.3 缆芯直径

缆芯的假设直径(D_f)应按式(A.2)计算:

$$D_{\rm f} = B \cdot D_{\rm c}$$
 (A.2)

式中:

D_f——缆芯假设直径,单位为毫米(mm);

B ——三芯电缆的成缆系数,数值为 2.16。

A.2.4 挤包内衬层

挤包内衬层的假设直径(D_B)应按式(A.3)计算:

$$D_{\rm B} = D_{\rm f} + 2t_{\rm B}$$
 (A.3.)

式中:

D_B ——挤包内衬层假设直径,单位为毫米(mm);

t_B ——挤包内衬层的标称厚度,单位为毫米(mm)

当有一个符合 13.3.3 规定的隔离套代替或附加在内衬层上时,应按式(A.7)计算。

A.2.5 同心导体和金属屏蔽

由于同心导体和金属屏蔽使直径增加的数值见表 A.2。

表 A.2 同心导体和金属屏蔽使直径的增加值

同心导体或金属屏蔽的标称截面积	直径的增加值	同心导体或金属屏蔽的标称截面积	直径的增加值
mm^2	mm	mm^2	mm
1.5	0.5	50	1.7
2.5	0.5	70	2.0
4	0.5	95	2.4
6	0.6	120	2.7
10	0.8	150	3.0
16	1.1	185	4.0
25	1.2	240	5.0
35	1.4	300	6.0

如果同心导体或金属屏蔽的标称截面积介于表 A.2 所列数据的两数之间,那么取这两个标称值中较大数值所对应的直径增加值。

如果有金属屏蔽层,表 A.2 中规定的屏蔽层截面积应按式(A.4)或式(A.5)计算:

a) 金属带屏蔽

$$S_{mn} = n_t \times t_t \times W_t$$
 (A.4)

式中:

 S_{mn} ——屏蔽层标称截面积,单位为平方毫米 (mm^2) ;

 n_+ ——金属带根数;

t_t ——单根金属带的标称厚度,单位为毫米(mm);

W, ——单根金属带的标称宽度,单位为毫米(mm)。

当屏蔽总厚度小于 0.15 mm 时,直径增加值为零。

屏蔽总厚度规定如下:

- ——单根金属带重叠绕包屏蔽或两层金属带间隙绕包屏蔽,屏蔽总厚度为金属带厚度的两倍;
- ——金属带纵包屏蔽时,如果搭盖率小于 30%,屏蔽总厚度为金属带的厚度;如果搭盖率达到或超过 30%,屏蔽总厚度为金属带厚度的两倍。
- b) 金属丝屏蔽(包括一反向扎线,若有)

$$S_{\rm mn} = \frac{n_{\rm w} \times d_{\rm w}^2 \times \pi}{4} + n_{\rm h} \times t_{\rm h} \times W_{\rm h} \qquad \cdots \qquad (A.5)$$

式中:

n_w ——金属丝根数;

d_w ——单根金属丝直径,单位为毫米(mm);

*n*_h ——反向扎带根数;

 t_h ——厚度大于 0.3 mm 的反向扎带的厚度,单位为毫米(mm);

W_h——反向扎带的宽度,单位为毫米(mm)。

A.2.6 铅套

铅套的假设直径(Dpb)应按式(A.6)计算:

$$D_{\rm pb} = D_{\rm g} + 2t_{\rm pb}$$
 (A.6)

式中.

D_{pb}——铅套假设直径,单位为毫米(mm)。

A.2.7 隔离套

隔离套的假设直径(D_s)应按式(A.7)计算:

$$D_{s} = D_{u} + 2t_{ss} \qquad \qquad \cdots \cdots (A.7)$$

式中:

D。——隔离套假设直径,单位为毫米(mm)。

A.2.8 包带垫层

包带垫层的假设直径 D_{Lb} 应按式(A.8)计算:

$$D_{Lb} = D_{ULb} + 2t_{Lb}$$
 (A.8)

式中:

D_{Lb} ——包带垫层假设直径,单位为毫米(mm);

D_{ULb} ——包带前假设直径,单位为毫米(mm);

 t_{1b} ——包带垫层厚度(例如按 13.3.4 规定时为 1.5),单位为毫米(mm)。

A.2.9 铠装

铠装的假设直径(D_x)应按式(A.9)或式(A.10)计算:

a) 扁或圆金属丝铠装

$$D_{\rm X} = D_{\rm A} + 2t_{\rm A} + 2t_{\rm w}$$
 (A.9)

式中:

Dx ——铠装假设直径,单位为毫米(mm);

D_A ——铠装前假设直径,单位为毫米(mm);

tw ——如果有反向螺旋扎带时厚度大于 0.3 mm 的反向螺旋扎带厚度,单位为毫米(mm)。

b) 双金属带铠装

$$D_{\mathrm{X}} = D_{\mathrm{A}} + 4t_{\mathrm{AD}} \qquad \qquad \cdots \qquad (A.10)$$

式中:

t_{AD}——铠装带标称厚度,单位为毫米(mm)。

附 录 B (规范性附录) 数值修约

B.1 假设计算法的数值修约

在按附录 A 计算假设直径和确定单元尺寸而对数值进行修约时,采用下述规则。

当任何阶段的计算值小数点后多于一位数时,数值应修约到一位小数,即精确到 0.1 mm。每一阶段的假设直径数值应修约到 0.1 mm,当用来确定包覆层厚度和直径时,在用到相应的公式或表格中去之前应先进行修约,按附录 A 要求从修约后的假设直径计算出的厚度应依次修约到 0.1 mm。

用下述实例来说明这些规则:

a) 修约前数值的第二位小数为 0、1、2、3 或 4 时,则小数点后第一位小数保持不变(舍弃);

示例 1: 2.12 ≈ 2.1

示例 2: 2.449 ≈ 2.4

示例 3: 25.047 8 ≈ 25.0

b) 修约前数值的第二位小数为 9、8、7、6 或 5 时,则小数点后第一位小数应增加 1(进一)。

示例 4: 2.17 ≈ 2.2

示例 5: 2.453 ≈ 2.5

示例 6:30.050 ≈ 30.1

B.2 用作其他目的的数值修约

除 B.1 考虑的用途外,有可能某些数值需要修约到多于一位小数,例如计算几次测量的平均值,或标称值加上一个百分率偏差以后的最小值。在这些情况下,应按有关条文修约到小数点后面的规定位数。

这时修约的方法为:

- a) 如果修约前应保留的最后数值后一位数为 0、1、2、3 或 4 时,则最后数值应保持不变(舍弃);
- b) 如果修约前应保留的最后数值后一位数为 9、8、7、6 或 5 时,则最后数值加 1(进一)。

示例 1: 2.449 ≈ 2.45 修约到二位小数

示例 2: 2.449 ≈ 2.4 修约到一位小数

示例 3: 25.047 8 ≈ 25.048 修约到三位小数

示例 4: 25.047 8 ≈ 25.0 修约到一位小数

B.3 测定值或其计算值与规定值的表示和判定

在判定测定值或其计算值是否符合要求时,应将测试所得的测定值或其计算值与规定值做比较,比较方法应采用修约值比较法,比较规则应符合 GB/T 8170 的规定。

测定值或其计算值的修约数位通常应与规定值的数位一致。表 B.1 列出了一些规定值、测定值或其计算值的修约数位。

表 B.1 规定值、测定值或其计算值的修约数位

项目	单位	规定值的修约数位	测定值或其计算值的修约数位
绝缘最小厚度 非金属护套最小厚度 挤包内衬层最小厚度 铅套最小厚度 铠装金属丝最小直径 铠装金属线最小厚度 铠装金属带最小厚度	mm	修约到百分位	修约到百分位

附录C (规范性附录) HEPR 绝缘硬度测定

C.1 试样

试样应是具有全部护层的一段成品电缆,小心地剥开试样,直至 HEPR 绝缘的测量表面,也可采用一段绝缘线芯作试样。

C.2 测量步骤

C.2.1 一般规定

测量除按下述要求外,还应按 ISO 48 规定进行。

C.2.2 大曲率面

测量装置应符合 ISO 48 规定,结构应便于使仪器稳定地放置在 HEPR 的绝缘上,同时使压脚和压头与绝缘表面垂直接触,这可由下述途径之一实现:

- a) 仪器上装有便于调节的万向接头可动脚,可与绝缘弯曲表面相适应;
- b) 仪器由底板上两个平行杆 A 和 A'固定,其间距离由表面弯曲程度决定(见图 C.1)。 这些方法可用于曲率半径 20 mm 以上的表面。

用于测量 HEPR 绝缘厚度小于 4 mm 的仪器,应采用 ISO 48 中对于小试样规定的测量方法。

说明:

A、A'---平行杆。

图 C.1 大曲率面的测量

C.2.3 小曲率面

对于曲率半径很小表面的测量步骤同 C.2.1 规定,试样应与测量仪器用同一刚性底板固定,这样可以保证 HEPR 绝缘在压头压力增加时整体移动最小;同时可使压头与试样轴线垂直。

相应的步骤如下:

- a) 将测量样品放在金属夹具槽中[见图 C.2 a)];
- b) 用 V 型枕台固定测量样品的两端导体[见图 C.2 b)]。

由此方法测量的表面曲率半径的最小值可达 4 mm。对于更小的曲率半径表面应采用 ISO 48 中所述的方法和仪器。

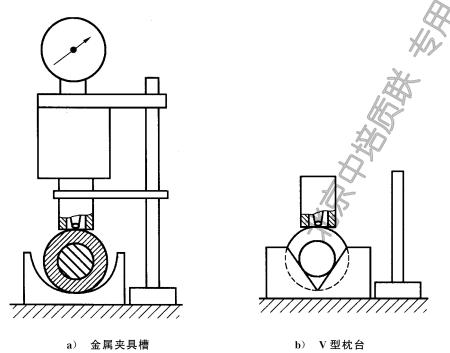


图 C.2 小曲率面的测量

C.2.4 预处理和测量温度

测量至少应在制造(即硫化)后 16 h 进行。

测量应在(20±2)℃温度下进行,试样在此温度下至少保持3h后立即测量。

C.2.5 测量次数

一次测量应在分布于试样的 3 个或 5 个点上进行,试样的硬度为测量结果的中间值,以最接近于国际橡胶硬度级(IRHD)的整数表示。

附 录 D

(规范性附录)

半导电屏蔽电阻率的测量方法

从 150 mm 长成品电缆样品上制备试样。

将电缆绝缘线芯样品沿纵向对半切开,除去导体以制备导体屏蔽试样,如有隔离层也应除去(见图 D.1)。将绝缘线芯外所有保护层除去后制备绝缘屏蔽试片(见图 D.2)。

屏蔽层体积电阻系数的测定步骤如下:

- a) 将四只涂银电极 A、B、C 和 D(见图 D.1 和图 D.2)置于半导电层表面。两个电位电极 B 和 C 间距 50 mm。两个电流电极 A 和 D 相应地在电位电极外侧间隔至少 25 mm。
- b) 采用合适的夹子连接电极。在连接导体屏蔽电极时,应确保夹子与试样外表面绝缘屏蔽层的 绝缘。
- c) 将组装好的试样放入预热到规定温度的烘箱中。30 min 后用测试线路测量电极间电阻,测试 线路的功率不超过 100 mW。
- d) 电阻测量后,在室温下测量导体屏蔽和绝缘的外径及导体屏蔽和绝缘屏蔽层的厚度。每个数据取6个测量值的平均值。

体积电阻率按式(D.1)或式(D.2)计算:

a) 导体屏蔽

$$\rho_{c} = \frac{R_{c} \times \pi \times (D_{c} - T_{c}) \times T_{c}}{2L_{c}} \qquad \qquad \cdots$$
 (D.1)

式中:

 ρ_c ——导体屏蔽体积电阻率,单位为欧姆米($\Omega \cdot m$);

 R_{c} ——测量电阻,单位为欧姆(Ω);

D。——导体屏蔽外径,单位为米(m);

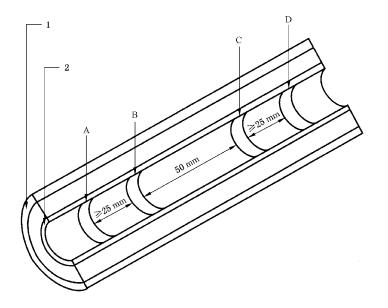
T。——导体屏蔽平均厚度,单位为米(m);

L。——电位电极间距离,单位为米(m)。

b) 绝缘屏蔽

$$\rho_{i} = \frac{R_{i} \times \pi \times (D_{ii} - T_{i}) \times T_{i}}{L_{ii}} \qquad \dots$$
 (D.2)

式中:

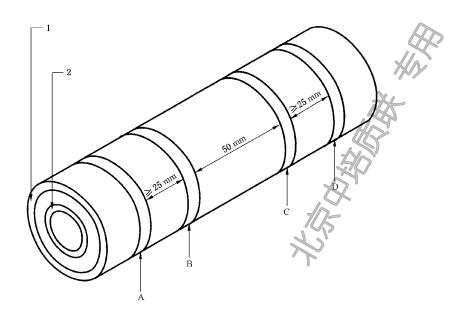

 ρ_i ——绝缘屏蔽体积电阻率,单位为欧姆米($\Omega \cdot m$);

 R_i ——测量电阻,单位为欧姆(Ω);

D;;——绝缘屏蔽外径,单位为米(m);

T_i ----绝缘屏蔽平均厚度,单位为米(m);

L_{ii} ——电位电极间距离,单位为米(m)。


说明:

——绝缘屏蔽层;

——导体屏蔽层;

B、C ——电位电极; A、D ——电流电极。

图 D.1 导体屏蔽体积电阻率测量

说明:

——绝缘屏蔽层;

2 ----导体屏蔽层;

B、C ——电位电极;

A、D ——电流电极。

图 D.2 绝缘屏蔽体积电阻率测量

附 录 E (规范性附录) 透水试验

E.1 试样制备

将一段至少长 6 m 未按第 18 章做过任何电气性能试验的成品电缆样品,按 18.5 规定进行弯曲试验,但不进行附加的局部放电试验。

从经过弯曲试验后并在水平放置的电缆上割取一段 3 m 长的电缆。在其中间的部位开一个约 50 mm宽的圆环,剥去环内绝缘屏蔽外部所有护层。如果制造方声明导体也有阻水结构时,则应将圆环内导体外部的各层材料全部剥除。

如果电缆中含有间歇式纵向阻水屏障,试样中至少应含有两个这样的屏障,圆环应开在两个屏障之间。在此情况下,屏障间的平均距离在这种电缆中应加以说明,电缆试样的长度也应相应地确定。

圆环应切割得使相关间隙很容易暴露在水中,如果电缆只有导体阻水结构,那么应用合适的材料密封有关的切割表面,或者剥除外面的所有包覆层。

用一个合适的装置将一根直径至少为 10 mm 的管子垂直地安置在切开的圆环上面,并与电缆外护套的表面相密封(见图 E.1)。在电缆密封出口处,该装置不应在电缆上产生机械应力。

某些阻水屏障对纵向透水的影响可能与水中的一些成分有关(如水的 pH 值和离子浓度),除非另有规定,一般应采用普通自来水做试验。

E.2 试验

将 (20 ± 10) ℃温度的水在 5 min 内注入管内,使管子中水位高于电缆中心轴线 1 m(见图 E.1),试样应放置 24 h。

对试样进行 10 次加热循环,采用导体通电加热方法,使导体温度超过电缆正常运行时导体最高温度 $5~\mathrm{K}{\sim}10~\mathrm{K}$,但不应达到 $100~\mathrm{C}$ 。

每一次热循环应持续 8 h.其间导体温度应在上述规定温度范围内至少维持 2 h,随后应至少自然 冷却 3 h。水头应维持 1 m 高。

注:由于在试验中不施加电压,故可在系统中接上另一根相同的模拟电缆一起试验,可直接在此根模拟电缆的导体上测量温度。

单位为毫米

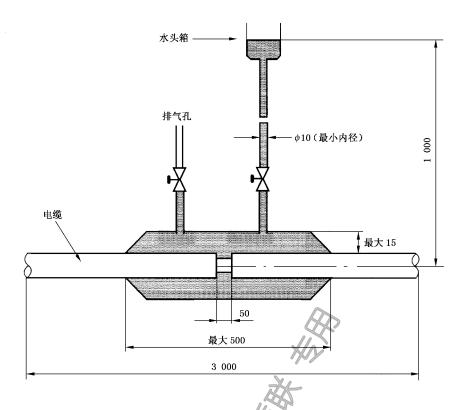


图 E.1 纵向透水试验示意

E.3 要求

在整个试验期间,试样的两端不应有水分渗出。

附 录 F (规范性附录) 具有纵包金属箔复合护层电缆组件的试验

F.1 目视检查

应对电缆进行分解和目视检查。应运用正常目力或无扩大的矫正视力检查,确认复合护层的金属 箔没有开裂或分离,或对电缆其他部分造成损坏。

F.2 金属箔粘结强度

F.2.1 步骤

试样应取自金属箔与塑料外护套相粘结的电缆护层。

试样的长度和宽度应分别为 200 mm 和 10 mm。

试样的一端应剥开 50 mm~120 mm,并装在拉力试验机上。拉力试验机的一个夹头夹住塑料护套或半导电屏蔽层的一端,而金属箔的一端折弯由另一个夹头夹住,如图 E.1 所示。

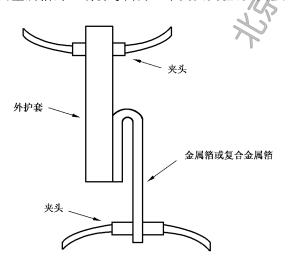


图 F.1 金属箔粘结强度试验

试验期间,试样应沿夹头平面保持近似垂直。

调整好连续记录装置后,分离的部分应以约 180° 角度从试样上剥离,而分离应持续足够的长度以读取剥离强度值。至少有一半的剩余粘结面积应以约 50~mm/min 的速度剥离。试验应在环境温度 $(20\pm15)^\circ$ ℃下进行。

F.2.2 要求

以剥离力除以试样宽度计算出粘结强度(N/mm)。至少应对 5 个试样进行试验,且最小的剥离强度值不应小于 0.5 N/mm。

如果剥离强度大于金属箔的抗拉强度以至于金属箔在剥离前断裂,则本试验应终止并记录断裂点。

F.3 金属箔搭接处的剥离强度

F.3.1 步骤

应从包含有金属箔搭接部分的电缆上取下长 200 mm 的试样。从取下的试样上应按图 F.2 所示切下只含有搭接的部分。

试验应以与 F.2.1 相同的方式进行。试样的安装如图 F.3 所示。

图 F.3 金属箔搭接处的粘结强度试验

F.3.2 要求

最小的剥离强度不应小于 0.5 N/mm。

如果剥离强度大于金属箔的抗拉强度以至于金属箔在剥离前断裂,则本试验应终止并记录断裂点。

附 录 G (规范性附录) 电缆产品的补充条款

G. 1	电缆型号和产品表示方法	
G. 1	1 代号	
G. 1	1.1 导体代号	
	铜导体 ······ (T)省町	
	铝导体	L
G. 1.	1.2 金属屏蔽代号	
	铜带屏蔽 ······ (D)省 ···	
	铜丝屏蔽	S
G. 1	1.3 绝缘代号	
	交联聚乙烯绝缘 ····································	
	乙丙橡胶绝缘	
G.1	硬乙丙橡胶绝缘 ······· E 1.4 护层代号	Y
	聚氯乙烯护套	V
	聚乙烯或聚烯烃护套	Y
	弹性体护套	F
	金属箔复合护层	
	铅套 ····································	Q
	注 1: 护层代号包括内衬层和隔离套等。	_
	注 2: 弹性体护套包括氯丁橡胶、氯磺化聚乙烯或类似聚合物为基的护套混合料。若订货合同中未注明,则采用的种弹性体由制造方确定。	刂
G. 1.	1.5 铠装代号	
	双钢带铠装·····	2
	细圆钢丝铠装	3
	粗圆钢丝铠装	4
	(双)非磁性金属带铠装	6
	非磁性金属丝铠装	7
	注 1: 非磁性金属带包括非磁性不锈钢带、铝或铝合金带等。若订货合同中未注明,则采用何种非磁性金属带由 造方确定。	制
	注 2: 非磁性金属丝包括非磁性不锈钢丝、铜丝或镀锡铜丝、铜合金丝或镀锡铜合金丝、铝或铝合金丝等。若订货。	合

同中未注明,则采用何种非磁性金属丝由制造方确定。

G.1.1.6 外护套代号

聚	氯乙烯外护套	2
聚	乙烯或聚烯烃外护套	3
弹	性体外护套	4
注:	弹性体外护套包括氯丁橡胶、氯磺化聚乙烯或类似聚合物为基的护套混合料。若订货合同中未注明,则采用	何
	种弹性体由制造方确定。	

G.1.2 产品型号

产品型号的组成和排列顺序见图 G.1。

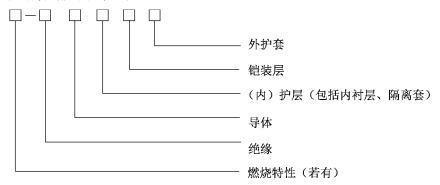


图 G.1 产品型号的组成和排列顺序

电缆常用型号见表 G.1。

电缆常用型号

型号arb		名称	
铜芯	铝芯	石 你	
YJV	YJLV	交联聚乙烯绝缘聚氯乙烯护套电力电缆	
YJY	YJLY	交联聚乙烯绝缘聚乙烯或聚烯烃护套电力电缆	
YJV22	YJLV22	交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆	
YJV23	YJLV23	交联聚乙烯绝缘钢带铠装聚乙烯或聚烯烃护套电力电缆	
YJV32	YJLV32	交联聚乙烯绝缘细圆钢丝铠装聚氯乙烯护套电力电缆	
YJV33	YJLV33	交联聚乙烯绝缘细圆钢丝铠装聚乙烯或聚烯烃护套电力电缆	
* 表由刑是未有	1今燃烧糕烘		

- 表中型号未包含燃烧特性。
- b 表中未列出的电缆型号可按 G.1.2 的规定组成。

G.1.3 产品表示方法

产品用型号(型号中有数字代号的电缆外护套,数字前的文字代号表示内护层)、规格(额定电压、芯 数、标称截面积)及本部分标准编号表示。

阻燃电缆产品的表示方法,应符合 GB/T 19666 规定。

示例 1: 铝芯交联聚乙烯绝缘铜带屏蔽钢带铠装聚氯乙烯护套电力电缆,额定电压为 26/35 kV,三芯,标称截面积 120 mm²,表示为:

YJLV22-26/35 3×120 GB/T 12706.3—2020

GB/T 12706.3-2020

示例 2: 铜芯交联聚乙烯绝缘铜丝屏蔽聚氯乙烯内护套钢带铠装聚氯乙烯护套电力电缆,额定电压为 26/35 kV,三 芯,标称截面积 240 mm²,铜丝屏蔽标称截面积 25 mm²,表示为: YJSV22-26/35 3×240/25 GB/T 12706.3—2020

G.2 产品验收规则、交货长度、成品电缆标志及电缆包装、运输和贮存

G.2.1 验收规则

产品应由制造方的质量检验部门检验合格方可出厂。每个出厂产品的包装件上应附有产品质量检验合格证。

产品应按本部分规定的试验项目进行试验验收。

G.2.2 交货长度

根据双方协议长度交货,长度计量误差不应超过±0.5%。 重量不超过80 kg 的短段电缆,可以成圈包装。

G.2.3 成品电缆标志

成品电缆的护套表面应有制造厂名称、产品型号规格及额定电压的连续标志,标志应字迹清楚、容易辨认、耐擦。

成品电缆标志应符合 GB/T 6995.3 规定。

G.2.4 电缆包装

- **G.2.4.1** 电缆应妥善包装在符合 JB/T 8137 规定的电缆盘上交货。电缆端头应可靠密封,伸出盘外的电缆端头应密封保护。
- G.2.4.2 成盘电缆的电缆盘外侧及成圈电缆的附加标签应标明:
 - a) 制造厂名称或商标;
 - b) 电缆型号和规格;
 - c) 长度,m:
 - d) 毛重,kg;
 - e) 制造日期: 年 月;
 - f) 表示电缆盘正确滚动方向的符号;
 - g) 本部分标准编号。

G.2.5 运输和贮存

电缆的运输和贮存应符合下列要求:

- a) 电缆应避免在露天存放,电缆盘不应平放;
- b) 运输中不应从高处扔下装有电缆的电缆盘,不应机械损伤电缆;
- c) 吊装包装件时,不应几盘同时吊装。在车辆、船舶等运输工具上,电缆盘应放置放稳,并用合适方法固定,防止互撞或翻倒。

G.3 产品安装条件

G.3.1 电缆安装时的环境温度

具有聚氯乙烯绝缘或聚氯乙烯护套或无卤阻燃护套的电缆,安装时环境温度不宜低于0℃。

G.3.2 电缆安装时的最小弯曲半径

电缆安装时的最小允许弯曲半径见表 G.2。

表 G.2 电缆安装时的最小弯曲半径

项目	单芯电缆		三芯电缆	
グ 日	无铠装	有铠装	无铠装	有铠装
安装时的电缆最小弯曲半径	20D	15D	15D	12D
靠近连接盒和终端的电缆最小弯曲半径(弯曲应小 心控制,如采用成型导板)	15D	12 <i>D</i>	12D	10D
注 : D 为电缆外径。			7//	9

参考文献

- [1] GB/T 12706.2 额定电压 1 kV(U_m =1.2 kV)到 35 kV (U_m =40.5 kV)挤包绝缘电力电缆及附件 第 2 部分:额定电压 6 kV (U_m =7.2 kV)和 30 kV(U_m =36 kV)电缆
 - [2] JB/T 10181(所有部分) 电缆载流量计算
- [3] IEC 61443 Short-circuit temperature limits of electric cables with rated voltages above 30 kV($U_{\rm m} =$ 36 kV)

GB/T 12706. 3-2020

版权专有 侵权必究